Python实现读取并显示图片的两种方法

在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片。本人偏爱 matpoltlib,因为它的语法更像 matlab。

王佳亮

一、matplotlib

1. 显示图片

1
2
3
4
5
6
7
8
9
10
11
import matplotlib.pyplot as plt# plt 用于显示图片
import matplotlib.image as mpimg# mpimg 用于读取图片
import numpy as np
 
lena= mpimg.imread('lena.png')# 读取和代码处于同一目录下的 lena.png
# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
lena.shape#(512, 512, 3)
 
plt.imshow(lena)# 显示图片
plt.axis('off')# 不显示坐标轴
plt.show()

2. 显示某个通道

1
2
3
4
5
6
7
8
9
10
11
# 显示图片的第一个通道
lena_1= lena[:,:,0]
plt.imshow('lena_1')
plt.show()
# 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:
plt.imshow('lena_1', cmap='Greys_r')
plt.show()
 
img= plt.imshow('lena_1')
img.set_cmap('gray')# 'hot' 是热量图
plt.show()

3. 将 RGB 转为灰度图

matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:

1
2
3
4
5
6
7
8
def rgb2gray(rgb):
  return np.dot(rgb[...,:3], [0.299,0.587,0.114])
 
gray= rgb2gray(lena) 
# 也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))
plt.imshow(gray, cmap='Greys_r')
plt.axis('off')
plt.show()

4. 对图像进行放缩

这里要用到 scipy

1
2
3
4
5
from scipyimport misc
lena_new_sz= misc.imresize(lena,0.5)# 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
plt.imshow(lena_new_sz)
plt.axis('off')
plt.show()

5. 保存图像

5.1 保存 matplotlib 画出的图像

该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。

1
2
3
plt.imshow(lena_new_sz)
plt.axis('off')
plt.savefig('lena_new_sz.png')

5.2 将 array 保存为图像

1
2
from scipyimport misc
misc.imsave('lena_new_sz.png', lena_new_sz)

5.3 直接保存 array

读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失

1
2
np.save('lena_new_sz', lena_new_sz)# 会在保存的名字后面自动加上.npy
img= np.load('lena_new_sz.npy')# 读取前面保存的数组

二、PIL

1. 显示图片

1
2
3
from PILimport Image
im= Image.open('lena.png')
im.show()

2. 将 PIL Image 图片转换为 numpy 数组

1
2
im_array= np.array(im)
# 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝

3. 保存 PIL 图片

直接调用 Image 类的 save 方法

1
2
3
from PILimport Image
I= Image.open('lena.png')
I.save('new_lena.png')

4. 将 numpy 数组转换为 PIL 图片

这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uinit8 型的,范围是0-255,所以要进行转换:

1
2
3
4
5
import matplotlib.image as mpimg
from PILimport Image
lena= mpimg.imread('lena.png')# 这里读入的数据是 float32 型的,范围是0-1
im= Image.fromarray(np.uinit8(lena*255))
im.show()

5. RGB 转换为灰度图

1
2
3
4
5
from PILimport Image
I= Image.open('lena.png')
I.show()
L= I.convert('L')
L.show()
  • 122
  • 摘抄
  • https://www.cnblogs.com/lantingg/p/9259840.html
广东快乐十分